![]() ![]() | |||||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() | ![]() Berliner Physikalisches Kolloquium im Magnus-Haus ![]() Das Berliner Physikalische Kolloquium (BPK) im Magnus-Haus wurde 1998 von der Physikalischen Gesellschaft zu Berlin initiiert und wird in Gemeinschaft mit der Freien Universität Berlin, der Humboldt-Universität zu Berlin, der Technischen Universität Berlin und der Universität Potsdam mit Unterstützung durch die Wilhelm und Else Heraeus-Stiftung durchgeführt. Es findet - außer in den Monaten März, August und September - an jedem ersten oder zweiten Donnerstag im Monat statt. ![]() Liste aller Termine im Sommersemester 2018 ![]() ![]() Zum Archiv des Berliner Physikalischen Kolloquiums ![]() ![]() Bemerkungen zum Magnus-Haus ![]() ![]() Wegbeschreibung zum Magnus-Haus ![]() ![]() Berliner Physikalisches Kolloquium im Sommersemester 2018 ![]() Im Berliner Physikalischen Kolloquium im Magnus-Haus wird Prof. Dr. Serena DeBeer, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA, vortragen. ![]()
![]() Zusammenfassung ![]() Every year, the global community flares about 140 billion m3 of natural gas or 3.5% of the world’s total supply. Abundant and inexpensive, natural gas is dominantly comprised of methane. Methane is often burned, rather than utilized as a fuel, because of the difficulties in transporting relatively small quantities from various remote natural gas sites. This has raised interest in possible gas to liquid conversion processes that would allow for an economically viable utilization of methane. Presently, the industrial processes for converting methane to methanol employ a multiple step process and large costly factories, which do not provide a realistic solution. In contrast, in nature, there are bacteria containing the enzyme methane monooxygenase, which allow for the direct conversion of methane to liquid methanol under ambient conditions. As such, there is great interest in understanding how these enzymes work on an atomic level. In our laboratories, we utilize a variety of X-ray based spectroscopic approaches, combined with theory, to understand the mechanism of these enzymes. The broader goal of our work is to translate these findings into knowledge-based catalytic design. ![]()
![]() | |||||||||||
![]() |