Home
Kalender
Preise
Veranstaltungen
MvL-Kolloquium
BPK im Magnus-Haus
Karl-Scheel-Sitzung
Besichtigungen
Sonderkolloquien
Physik in Berlin
Die PGzB
Archiv
Impressum



Berliner Physikalisches Kolloquium
im Magnus-Haus

Das Berliner Physikalische Kolloquium (BPK) im Magnus-Haus wurde 1998 von der Physikalischen Gesellschaft zu Berlin initiiert und wird in Gemeinschaft mit der Freien Universität Berlin, der Humboldt-Universität zu Berlin, der Technischen Universität Berlin und der Universität Potsdam (und seit dem Wintersemester 2022/23 auch der BTU Cottbus-Senftenberg) mit Unterstützung durch die Wilhelm und Else Heraeus-Stiftung durchgeführt. Es findet - außer in den Monaten März, August und September - an jedem ersten oder zweiten Donnerstag im Monat statt.

 

 


Liste aller Termine im Wintersemester 2022/23

Zum Archiv des Berliner Physikalischen Kolloquiums

Bemerkungen zum Magnus-Haus

Wegbeschreibung zum Magnus-Haus

Berliner Physikalisches Kolloquium
im Wintersemester 2022/23

Im Berliner Physikalischen Kolloquium im Magnus-Haus wird

Prof. Dr. Peter Baum,

Universität Konstanz,

vortragen.


Vortragstitel: Seeing Atoms and Electrons in Space and Time 
Termin: Donnerstag, 12. Januar 2023, 18:30 Uhr 
Moderation: Martin Weinelt, Freie Universität Berlin 
Ort: Magnus-Haus
Am Kupfergraben 7
10117 Berlin
und Online 

Zusammenfassung

The fundamental reason behind almost any light-matter interaction are atomic and electronic motion in space and time. In order to provide a movie-like access to such dynamics, we unify electron microscopy with attosecond and femtosecond laser technology. In this way, we combine the awesome spatial resolution of modern electron beams with the spectacular time resolution that is offered by the cycle period of light [1]. Selected results will be reported on the electric fields within metamaterials [2-3], the Einstein-de-Haas effect on atomic dimensions [4], the reaction path of phase transitions [5] and the formation of free-electron qubit states [6]. Many breakthroughs in science and technology have been achieved by disruptive imaging techniques, and our 4D electron microscopy may play this role for light-matter interaction on atomic dimensions.

[1] C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, P. Baum, “All-optical control and metrology of electron pulses”, Science 352, 429 (2016).

[2] A. Ryabov and P. Baum, “Electron microscopy of electromagnetic waveforms”, Science 353, 374 (2016).

[3] K. J. Mohler, D. Ehberger, I. Gronwald, C. Lange, R. Huber, P. Baum, „Ultrafast electron diffraction from nanophotonic waveforms via dynamical Aharonov-Bohm phases“, Science Advances (2020).

[4] S. R. Tauchert, M. Volkov, D. Ehberger, D. Kazenwadel, M. Evers, H. Lange, A. Donges, A. Book, W. Kreuzpaintner, U. Nowak, P. Baum, “Polarized phonons carry angular momentum in femtosecond demagnetization”, Nature 602, 73 (2022).

[5] P. Baum, Ding-Shyue Yang, A. H. Zewail, “4D Visualization of Transitional Structures in Phase Transformations by Electron Diffraction”, Science 318, 788 (2007).

[6] M. Tsarev, A. Ryabov, P. Baum, “Free-Electron Qubits and Maximum-Contrast Attosecond Pulses via Temporal Talbot Revivals”, Phys. Rev. Res. 3, 043033 (2021).